ASM Overview

• What is the ASMC?
• The ASM Problem
 – Focus areas & mission
• ASM Consortium Guideline Areas
 – Effective Operating Practices
• Example case study showing how display design can significantly impact operator effectiveness
 – Importance of human factors in automation system design
• Summary
Founded in 1994

Creating a new paradigm for the operation of complex industrial plants, with solution concepts that improve Operations’ ability to prevent and respond to abnormal situations.

www.asmconsortium.org
ASM Consortium - History

- **1990** - Formed an Alarm Management Task Force of 25 Honeywell Customer Representatives
- **1992** - Asserted need to go beyond alarm management to improve operator support
- **1993** - Established assessment project to understand abnormal situation management with 4 of Honeywell customers
- **1994** - Generated ASM problem statement and solution requirements document
- **1994** - Founded the ASM Joint R&D Consortium - 10 companies
- **1995** - Started NIST ASM Collaborative Decision Support Program with focus on feasibility of technology
- **1998** - Established @asset.MAX product and service offerings
- **1999** - Decided to embark on 3-year short-term research to field decision support solution concepts
- **2002, 2005** - Decided to continue another 3 years emphasis on closing gaps on effective operations practices & product development
What is an Abnormal Situation?

- An industrial process is being disturbed and the automated control system can **not cope**...
- Consequently, the operations team must **intervene to supplement** the control system.
- Impacts **profitability** in multiple ways:
 - Product Quality
 - Job Satisfaction
 - Equipment Damage
 - Product Throughput
 - Personal Injury
 - Environmental Release
 - Public Relations
 - Loss of Life
 - Public Relations
The Paradox of Automation…

- Better automation leads to more sophisticated processes
- More sophisticated processes leads to more opportunities for error
- We “fix” the increasing errors with still more automation

When things go wrong, people have difficulty intervening to correct the problem!
Unexpected Events Cost 3-8% Capacity
> $10B annually in Lost Production

Source: ASM Consortium Research

Plant Operating Target
Optimization efforts
Operational Constraints

Plant Capacity Limit

Plant Incidents

Days per Year

< 60%

Daily Production Level

95%

100%

Summarized Production Data

33.5M
38.5M
24.2M

Source: ASM Consortium Research
ASM Sources of Abnormal Events

- Equipment: 40%
- People: 40%
- Process: 20%

- Often Preventable
- Mostly Preventable
- Almost Always Preventable

People:
- Fail to detect problems in reams of data
- Are required to make hasty interventions
- May be unable to make consistent responses
- May be unable to communicate well

Established in literature; confirmed by 18 plant studies - US, Canada, & Europe
ASM Effective Operations Practices
Areas of Focus

- Abnormal Situation Understanding
- Management Structure & Policy
- Training and Skill Development
- Communications
- Procedures
- Control Room and Field Environment
- Monitoring, Control and Support Applications

- Future Role of Operator Vision
- ASM Overview References
ASM Alarm Management
Areas of Focus

• Research areas include
 – Alarm Flooding Problem
 – Alarm Philosophy and Rationalization
 – Performance Metrics Development
 – Alarm Management Guidelines

• Research led to development of Alarm Management Tools
 – Maintain engineered limits
 – Alarm help for operators
 – Alarm metric reporting
 – Alert where appropriate

• Continue to support the development of a guidelines document by Engineering Equipment and Materials Users Association (EEMUA)
 – New version expected soon
 – http://www.eemua.co.uk/publications/control/

ASM® Consortium Guidelines
Effective Alarm Management Practices

Last Revision Date: 22 January 2007
Version: 5.00
Filename: ASMAlarmMgtPractices_v500.doc

Prepared by: Catherine Burns, Jamie Ermington, John Hajdukiewicz, and Dil Venon Posing ASM® Joint R&D Consortium

Contact Information: ASM® Consortium
www.asmconsortium.com

This document and the information contained herein are confidential to the ASM® Consortium and the property of Honeywell International, and are made available only to ASM® Consortium member company employees. This document, and any copy thereof, and the information contained herein shall be maintained in strictest confidence; shall not be disclosed or distributed (a) to persons who are not ASM® Consortium employees, or (b) to ASM® Consortium employees for whom such information is not necessary in connection with their assigned responsibilities. When the employee in possession of this document terminates employment with the ASM® member company, this document and any copies thereof shall be returned to the employee's manager. There shall be no exceptions to the terms and conditions set forth herein except as authorized in writing by the responsible ASM® Program Manager in accordance with the provisions of the ASM® Consortium Agreement.

©ASM and Abnormal Situation Management are U.S. Registered Trademarks of Honeywell, International
• Research areas
 – Content and Format
 – Development
 – Deployment
 – Maintenance
 – Training

• Research has led to
 – development of a product for implementing automated and mixed manual/automated procedures
 – Effective Procedural Practices guideline
Effective Operator Display Design
Areas of Focus

- Display Types
- Display Content and Task Appropriate Information
- Display Style Guidelines
- Display Layout
- Navigation
- Use of Color
- Use of Symbols and Process Connections
- Use of Text and Numbers
- Interaction with Display
- Alarm Configuration Scheme
- Audible Annunciation of Alarms
- Visual Annunciation of Alarms
- Training Program
- On-line Guidance
- Design Methodology
- Management of Change
• History
 – 1998, a paper was presented at the AIChE conference describing how an ASM member was applying the ASM Consortium's Best Practices to the design of an ethylene plant
 – In Sept, 2000 – that ethylene plant was successfully started-up and the design work was put into service
 – User interface design based on ASM principles was a key part of the implementation
 » Learnings from the NIST research put into practice at this site
 – In addition, many ASM recommended effective operating practices also in place
 » For example, extensive training on dynamic simulators in the major units prior to the plant startup

ASM Style Interface

Designed to enhance operator’s attention and perception of the plant

• Principal design aspects included:
 – Multiple windows with controlled window management
 – Multi-level views with increasing detail
 – Yoked and tabbed navigation
 – Integrated trends and alarm management
 – Integrated online access to documentation, alarm rationalization, operating procedures, logbook
 – Appropriate use of color, shape, object size, fonts, etc. based on human factors knowledge
ASM Case Study Experiment

• Question: Does an ASM style operator interface improve operator performance for identifying and resolving abnormal situations?

• Approach
 – Compare trained, experienced operator performance on their units’ own high-fidelity simulators using:
 » Traditional single window operator interface style
 » Advanced multi-window, linked navigation operator interface style
 – Ensure that the operator groups have similar experience & plant knowledge to reduce bias
 – Use results to estimate financial impact
ASM Experimental Design

• Selected 21 operators in two groups
 – 10 trained on & experienced with traditional style
 – 11 trained on & experienced with ASM

• Experiment included two main phases
 – Pretest
 » Questionnaire to assess work experience & qualifications, sample “console rounds”
 » Intent is to compare operator populations
 – Scenario performance
 » Simulator starts off in normal state, then training coordinator starts an abnormal condition scenario
 » Measure time to react/resolve
 » Defined 8 candidate scenarios, eventually used 4 of these for the comparison
Pre-Test Results

• Compared on:
 – number of years of experience as operator
 – number of years of experience in this organization
 – number of years as a panel operator
 – number of different areas qualified in
 – percentage of “console rounds” identified

• The only statistically significant difference is in the number of areas qualified – the traditional group had a small advantage

• The general conclusion is that the two groups of operators are comparable
ASM Case Study Results

Scenario Results for differences between Interfaces

• Detection
 – On average, operators using the advanced interface detected an event before the alarm 48% of the time
 – A 38% improvement for the advanced interface over the traditional interface

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Traditional</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 2</td>
<td>0%</td>
<td>27%</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>10%</td>
<td>82%</td>
</tr>
<tr>
<td>Scenario 7</td>
<td>10%</td>
<td>82%</td>
</tr>
<tr>
<td>Scenario 8</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>Mean</td>
<td>10%</td>
<td>48%</td>
</tr>
</tbody>
</table>

• Resolution
 – On average, operators using the advanced interface successfully handled and corrected the abnormal situation 96% of the time
 – A 26% improvement for the advanced interface over the traditional interface

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Traditional</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 2</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>Scenario 7</td>
<td>80%</td>
<td>91%</td>
</tr>
<tr>
<td>Scenario 8</td>
<td>70%</td>
<td>81%</td>
</tr>
<tr>
<td>Mean</td>
<td>70%</td>
<td>96%</td>
</tr>
</tbody>
</table>
Economic impact assessment

- Conducted a Monte Carlo simulation using site abnormal event data collected on the traditional style unit
- Collected annual baseline from 6 years of incident data

The total economic impact for the unit with the Traditional Style Displays

- On average, $870K USD/year
- The median economic impact (considered most likely) was $800K USD/year
- Note that data is from a 1.8 Blb/year ethylene plant

Case study demonstrates both technical measures and financial measures, and quantifies the opportunity for improvement using an advanced interface
ASM Summary

- ASM is a difficult problem, but the potential for improved plant safety and profitability is also significant
 - ASM technology and practices improve operator performance for incident avoidance and in abnormal situations
- Some key references for further details:
- ASM Public Dashboard
 - www.asmconsortium.com